

Subject Code: REE501

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2024-25 ELECTRICAL MACHINES-II

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x (07 = 14
Q no.	Question	СО	Level
a.	Define the terms pitch factor and distribution factor of an alternator.	1	K3
b.	Illustrate the conditions of parallel operation of alternators.	1	K3
c.	What is the function of synchronous condenser?	2	K4
d.	What are the effects of hunting in synchronous motor?	2	K4
e.	Calculate the slip for 2-pole, 50 Hz induction motor running at 2950 rpm.	3	K4
f.	What are the advantages of skewing rotor bars in squirrel cage induction motor?	4	K4
g.	List various starting methods of single-phase induction motor?	5	K3

SECTION B

2.	Attempt any <i>three</i> of the following:	07 x	3 = 21
a.	Examine in detail "Synchronous Impedance method" of determining	1	K3
	voltage regulation in cylindrical rotor alternator.		0
b.	With the help of suitable diagram explain Two-Reaction Theory in three	2	K4
	phase synchronous motors.	(N • Č
c.	Derive the expression for torque developed in a 3-phase induction	3	K4
	motor. State the condition of maximum torque. A 3- phase induction	\mathbf{N}	
	motor has a starting torque of 100% and a maximum torque of 200% of	w ·	
	the full load torque. Determine (a) slip at which maximum torque occurs		
	(b) full load slip.		
d.	What is the need of the starter in 3-Phase induction motor? With a neat	4	K4
	sketch describe autotransformer method of starting.		
e.	Develop the equivalent circuit of 1-phase induction motor based on	5	K3
	double revolving field theory.		

SECTION C

3.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
a.	A 3-phase, 2-pole, 50 Hz, star connected turboalternator has 54 slots	1	K3
	with 4 conductors per slot. The pitch of the coil is 2 slots less than the		
	pole pitch. Determine the useful flux per pole required to generate a line		
	voltage of 3.3 kV.		
b.	Investigate the effect of armature reaction in alternators at (i) unity	1	K3
	power factor (ii) zero power factor lagging and (iii) zero power factor		
	leading.		

4.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
a.	With the help of phasor diagrams explain the operation of synchronous	2	K4
	motor at constant load and variable excitation. Also, draw the V-curves		
	and state its significance.		

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2024-25

ELECTRICAL MACHINES-II

TIME: 3 HRS

M.MARKS: 70

b.	Explain in detail the concept of "hunting" in a 3-phase synchronous	2	K4	
	motor.			

5.	Attempt any one part of the following:	07 x	1 = 02
a.	Explain with the help of diagram No-Load test and Blocked-Rotor test	3	K4
	on a 3-phase induction motor.		
b.	An 18.65 kW, 4 pole, 50 Hz, 3-phase induction motor has friction and	3	K4
	windage loss of 2.5 percent of the output. The full load slip is 4 %.		
	Compute for full load (i) rotor copper loss (ii) rotor input and (iii) shaft		
	torque.		

6.	Attempt any <i>one</i> part of the following:	07 x	1 = 07	
a.	With the help of neat diagram explain star-delta starter in a 3-phase	4	K4	
	induction motor. Also, state its limitations.			
b.	Explain the following methods of speed control for 3-phase induction	4	K4	
	motors:			K
	(i) Rotor Rheostat Resistance control			0
	(ii) Stator voltage control			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ъ.
7.	Attempt any <i>one</i> part of the following:	07 x	<u>: 1 = 07</u>	
0	Investigate "Double Revoluting Field Theory" in 1 phase induction	5	V2	

7.	Attempt any one part of the following:	07	x 1 = 07
a.	Investigate "Double Revolving Field Theory" in 1-phase induction motor.	5	K3
b.	Elaborate on: (i) Universal motor (ii) Repulsion motor	5	K3
	59:10:23 AM		
	21-121-2012		