

				Sub	ject	Coc	de: F	KEE	502
Roll No:									

Printed Page: 1 of 3

BTECH (SEM V) THEORY EXAMINATION 2024-25 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

	SECTION A		
1.	Attempt all questions in brief.	2 x	10 = 20
Q no.	Question	CO	Level
a.	Define transfer function. Give an example for it.	1	K1
b.	What is Mason's gain formula?	1	K2
c.	What are the standard test signals used in control system.	2	K2
d.	What do you mean by Settling Time, write expression for 2 nd order system?	2	К3
e.	What are the main advantages of Root Locus plot?	3	K2
f.	What are the main advantages of Root Locus plot?	3	K2
g.	Define gain and phase margins.	4	K1
h.	Write advantages of Bode Plot.	4	K2
i.	What is the compensator? What are the different types of compensator?	5	K3
j.	What is the properties of state transition matrix?	5	K2

SECTION B

2.	Attempt any three of the following:	10 x	3 = 30
a.	Write down the differential equation governing the mechanical translation system and find the transfer function	1	K5
	M_2 M_2 B_3 B_4 B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_8 B_8 B_9 B_9 B_9	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
b.	The unity feedback system is characterized by an open loop transfer function is $G(S) = K/s(s+20)$. Determine the gain K, so that the system will have a damping ratio of 0.6. For this value of K, determine unit step response, time domain specifications: settling time (2% criterion), Peak overshoot, Rise time, Peak time, Delay time for a unit-step input.	2	K4
c.	Sketch the root locus of the system whose open loop transfer function is $G(s) = \frac{K}{s(s+2)(s+5)}$ Find the value of K so that system is marginal stable, find out damped frequency of oscillation, also find K when the damping ratio of the closed loop system is 0.5	3	K5

		 		 Sub	ject	Coc	de: k	SEE	2502
Roll No:									

BTECH (SEM V) THEORY EXAMINATION 2024-25 **CONTROL SYSTEM**

TIME: 3 HRS **M.MARKS: 100**

d.	Demonstrate the significance of gain margin and phase margin on a polar plot. Also, draw and properly label the polar plot for stable and unstable system.	4	K3
e.	State properties of State Transition Matrix (STM), find out State Transition Matrix for $A = \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix}$	5	K3

SECTION C

3. Attempt any <i>one</i> part of the following

 $10 \times 1 = 10$

Printed Page: 2 of 3

a.	Describe Mason's gain formula and obtain the transfer function of the SFG given below	1	K5
	G_3 G_5 G_6 G_7 G_7 G_7	~	0.
b.	Explain open loop and closed loop control system with a suitable	1	K4
	example in each case.		

Attempt any one part of the following:

 $10 \times 1 = 10$

a.	Derive the expression for steady state error and explain Kp,Kv and Ka.	2	K3
b.	Derive the time response of a second order control system for unit step	2	K3
	input		

Attempt any one part of the following: 5.

 $10 \times 1 = 10$

a.	Determine the value of K such that the roots of the characteristics	3	K4
	equation given below lie to the left of line s = -1.		
	$S^3 + 10S^2 + 20S + K = 0$		
b.	Explain the effect of addition of pole & zero on Root Locus & time	3	K3
	domain specifications.		

Attempt any one part of the following: 6.

 $10 \times 1 = 10$

a.	Draw the complete Nyquist plot for a unity feedback system having the	K5
	open loop Function, from this plot obtain all the information regarding	
	stability.	
	K	
	$G(s) H(s) = \frac{1}{s(s+2)(s+5)}$	
	s(s+3)(s+5)	

Roll No: Subject Code: KEE502

Printed Page: 3 of 3

BTECH (SEM V) THEORY EXAMINATION 2024-25 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

7.	Attempt any <i>one</i> part of the following:	10 x	1 = 10
a.	What are the characteristics of servomotors? Compare the AC and Dc	5	K3
	servomotors?		
b.	Obtain the state space representation for the following differential equation	5	K4
	y+5 $y+7$ $y=114$, where 'y' is the output and 'u' is the input.		

M-Jan-2025 9: 12:36 AM AT 9.138.98 OP25DP1 131