

PAPER ID-311057

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2024-25 ENGINEERING HYDROLOGY

TIME: 3 HRS

M.MARKS: 100

Note: Attempt all Sections. In case of any missing data, choose suitably. SECTION A

1. Attempt *all* questions in brief.

$2 \ge 10 = 20$

3 = 30

Q no.	Question	CO	Level
a.	List the forms of precipitation.	1	K1
b.	What is the difference between depression storage and interception?	1	K1
c.	What is the difference between a synthetic unit hydrograph and an instantaneous unit hydrograph?	2	K1
d.	What is the significance of the peak discharge in a flood hydrograph?	2	K1
e.	What is the empirical formula used in flood frequency studies? Provide one example.	3	K1
f.	What is meant by a design storm and how is it used in hydrology?	3	K1
g.	Define hydraulic conductivity of an aquifer and state its units.	4	K1
h.	What is partially penetrating well?	4	K1
i.	What are well losses? Explain the factors that contribute to well losses.	5	K1
j.	Explain the principles of groundwater modeling. How can models be	5	K2
	used to predict the effects of contamination and assist in groundwater management?		80

SECTION B

2. Attempt any *three* of the following:

Q no. Question CO Level Explain the water budget equation in detail and discuss how it helps in K2 1 a. understanding water availability and consumption in a region. The ordinates of storm hydrograph of a particular catchment are given 2 K3 b. below. Determine the ordinates of unit hydrograph and rainfall excess. Take catchment area as 50 km². Time 0 4 7 8 1 3 5 2 6 hr SHO 10 30 40 60 80 70 55 40 10 m^3/s Base 10 10 10 10 10 10 10 10 Flow m^3/s Analyze the effect of flood frequency analysis on the design of flood 3 K4 c. control infrastructure in areas with varied land use. d. A field test for permeability consists in observing the required for a K3 4 tracer to travel between two observation wells. A tracer was found to take 10-hour travel between two wells 50 m apart when the difference in the water surface elevation in them was 0.5 m. The mean particle size of aquifer is 2 mm and the porosity of the medium is 0.3. If kinematic viscosity is 0.01cm² /s. Estimate the coefficient of permeability and intrinsic permeability of the aquifer What is the role of GW in hydrologic cycle? Provide the water balance 5 K5 e. equation and highlight the GW related components in it.

PAPER ID-311057

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2024-25 **ENGINEERING HYDROLOGY**

TIME: 3 HRS

M.MARKS: 100

SECTION C

3. Attempt any *one* part of the following:

$10 \ge 1 = 10$

Q no.	Question	CO	Level
a.	Apply the concept of the water balance equation to a given watershed, incorporating data for precipitation, evaporation, infiltration, and initial	1	K3
1	losses.		
b.	Using the data for a specific region, calculate the infiltration capacity and its effect on groundwater recharge during a rainstorm.	1	K3
4.	Attempt any one part of the following:	10 x	1 = 10
Q no.	Question	CO	Level
a.	Apply the concept of mass curve to estimate the cumulative runoff for a specific storm in a watershed.	2	K3
b.	Compare the characteristics of flood hydrographs for two different catchment areas, analyzing how the time of concentration and land use influence the peak discharge.	2	K4
5.	Attempt any one part of the following:	10 x	x 1 = 10
Q no.	Question	CO	Level
a.	Describe the method of determining the aquifer parameters using the	3	K2

a.	Describe the method of determining the aquifer parameters using the	3	- K2
	pumping test data.		Ś
b.	Draw a neat sketch and show the various types of aquifers, confining units wells and interfaces in them along with their equivalent	3	K5
	terminology		

Attempt any one part of the following: 6.

$10 \ge 1 = 10$

6.	Attempt any one part of the following:	10 x	1 = 10
Q no.	Question	CO	Level
a.	Explain the difference between steady-state flow and unsteady-state flow in an aquifer, using an example.	4	K2
b.	Given a system of multiple wells, analyze the effect of mutual interference and calculate the resulting drawdown at a specific well.	4	K4
7.	Attempt any <i>one</i> part of the following:	10 x	1 = 10

Q no.	Question	CO	Level
a.	Explain in detail the Components of a rooftop rainwater harvesting	5	K4
	system.		
b.	Analyze a groundwater contamination case study where industrial activity is the primary cause. Discuss the steps taken to control and remediate the contamination	5	K4