

Roll No:

втесн

(SEM V) THEORY EXAMINATION 2024-25

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably. If required, use graph paper, and Semi-log paper.

SECTION A

1.	Attempt all questions in brief.	2 x 07	= 14	
Q no.		СО	Lev el	
a.	Explain, how the control systems are classified?	CO1	K3	
b.	Draw Torque –Speed characteristic of an AC servo motor and mention the effect of X/R ratio.	CO1	K3	
с.	The transfer function of a system is given by $T(s)=K(s+6) / s(s+2) (s+5) (s^2 +7s+12)$ Determine (i) Poles (ii) Zeros (iii) Characteristic equation and (iv) Pole- Zero plot	CO2	K4	
d.	Explain the term absolute and conditional stability.	CO3	K4	
e.	Define Phase margin, Gain margin Gain cross-over frequency and phase cross-over frequency.	CO4	K4	98
f.	Draw Lag and Lead network with passive elements.	CO5	K4	6.
g.	Discuss Kalman's test for determining state controllability.	CO5	K4 -	<i>y</i>

SECTION B

Attempt any three of the following: $07 \ge 3 = 21$ 2. Reduce the block-diagram shown in Fig (a). .Obtain overall transfer CO1 a. K3 function Y(s)/F(s) using block-diagram reduction rules. F(s) Y(s)G1 H1 G₂ H_2 H3 Fig (a) Draw the time response curve and define the time response specification CO2 K4 b. of second order control system for unit step input. For unity feedback system, open-loop transfer function is CO3 K4 c. $G(s) = K / s (s^2 + 10s + 36)$ Find the range of K for which the system is stable. Also, determine the value of K for which the system response is oscillatory and the value of frequency of oscillation at this value of K.

Printed Page: 2 of 3 Subject Code: BEE502

PAPER ID-310477

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2024-25 CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 70

d.	For the function ,	CO4	K4
	$G(s)=10 / (s+4) (s^2+4s+8)$		
	Draw a sketch of the polar plot and find the intersection with the real and		
	imaginary axis.		
e.	The system matrix of a linear time-invariant system is	CO5	K4
	$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$		
	Determine the state transition matrix by power series method. Also,		
	verify the result by Laplace transform method.		

SECTION C

3.	Attempt any <i>one</i> part of the following:	07 x 1	= 07	
a.	Explain the effect of feedback of control system on the followings:	CO1	K3	
	(i) Overall gain (ii) Bandwidth			
b.	Obtain the transfer function Y _{1(s)/F(s)} of mechanical system shown in Fig-	CO1	K3	
	(b) $B_2 \downarrow M_1 \downarrow B_1 \gamma_1(0)$ $M_2 \downarrow f(0) \downarrow \gamma_2(0)$ Fig.(b)	2		

4.	Attempt any <i>one</i> part of the following:	07 x 1	= 07
a.	(i) Derive the expression for the rise time of the response to unit step	CO2	K4
	input for the system whose closed loop transfer function is		
	C(s) = a		
	$\overline{R(s)} - \overline{s+a}$		
	(ii) How steady state error of a control system is determined? How it can		
	be reduced.? Discuss it		
b.	Discuss Proportional Derivative controller and obtain its overall effect	CO2	K4
	on specifications of the second order system.		

5.	Attempt any one part of the following:	07 x 1	= 07
a.	State and explain Hurwitz criterion. Also write a note on special cases of Routh's criterion.	CO3	K4
b.	Discuss any three rules for construction of root locus. Also determine angle of departure for the open loop transfer function of feedback control system	CO3	K4
	$G(s)H(s) = \frac{K}{s(s^2 + 6s + 12)}$		

 \sim

Subject Code: BEE502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2024-25

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 70

6.	Attempt any one part of the following:	07 x 1	= 07
a.	Using standard transfer function of a second order system, derive the	CO4	K4
	expression of resonant peak and resonant frequency.		
b.	Sketch the Nyquist plot for G(S)H(s)= $\frac{(s-z_1)}{s(s+p_1)}$; $z_1, p_1 > 0$	CO4	K4

7.	Attempt any one part of the following:	07 x 1	= 07
a.	Explain the effects and limitations of three types of electrical	CO5	K4
	compensators.		
b.	Discuss the derivation of the state model using following method (i)	CO5	K4
	Bush or companion form(ii) Jordan's form		

A-Jan 2025 9: 10:53 AMIA 9.138.98 0P250P1-31