

BTECH

Roll No:

(SEM V) THEORY EXAMINATION 2024-25

DESIGN AND ANALYSIS OF ALGORITHM

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt all questions in brief.		
Q no.	Question	CO	Level
a.	With example define algorithm. List few algorithm design techniques.	1	K1
b.	Briefly discuss the basic steps taken to design an algorithm.	1	K1
c.	Derive the time complexity of Heap Sort.	2	K2
d.	List the properties of Binomial Heap	2	K1
e.	With a suitable example explain the concept of Convex -Hull Problem	3	K2
f.	With a suitable example explain "Branch and Bound".	4	K2
g.	Describe "Randomized algorithms". List few randomized algorithms.	5	K2

SECTION B

	SECTION			
2.	Attempt any <i>three</i> of the following:	07 x 3	8 = 21	Ν
a.	Illustrate the operation of Merge –Sort on array A= (38, 27, 43, 3, 9, 82, 10).	1	K3	0)
	Also drive the time complexity of Merge Sort.		\sim	
b.	Define Binomial Heap. Write an algorithm for union of two binomial heaps.	2	K2	
	Also take a suitable example which clearly illustrates merging operation of two		KV	
	binomial heaps.	O	+	
c.	Apply the greedy single source shortest path algorithm on the graph given	3	K3	
	below.	X		
	$\begin{array}{c} 1 & 5 & 4 \\ 2 & 3 & 4 & 2 \\ 2 & 1 & 3 \end{array}$			
d.	Write Floyd's and Warshal's algorithm to find all pair shortest path in a	4	K2	
	graph. Discuss its time complexity.			
e.	Explain Vertex Cover Problem. Solve vertex cover problem using	5	K2	
	approximation algorithm			

SECTION C

3. Attempt any one part of the following: 07 x 1 = 07 a. Write Quick –Sort partition algorithm. Drive best and worst case time 1 K2 b. Find out Upper, Lower and Average bounds for the function f (n) = 3n+2 1 K3

4.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
a.	Insert the following string in the initially empty tries: DOG, DONE, CAT, CAN,	2	K3
	RIGHT, DO, JUG, DAA, CA, CAME. Also make a compress tries of it.		
b.	Design a Binomial Heap for the following A.	2	K3
	A= {7, 2, 4, 17, 1, 11, 6, 8, 15, 10, 20}		

1 | Page

QP25DP1_737 | 21-Jan-2025 9:08:52 AM | 47.9.128.201

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2024-25

DESIGN AND ANALYSIS OF ALGORITHM

TIME:	3	HRS

a.

b.

M.MARKS: 70

5.	Attempt any or	<i>ie</i> par	t of t	the fo	llow	ing:		07 x 1	l = 07
a.	Write and expla	ain th	e Kri	ıskal'	s alg	gorithn	n to find Minimum Spanning	3	K2
	Tree of a graph with a suitable example.								
b.	and the knapsac are given below	ck cap '.	acity	of m	=15.		l Knapsack problem with n=7 rofits and weights of the items		K3
	Profit (P): Weight (w):	5 10							

6 41 C 11 . Attempt 6. Illustrate

Attempt any one part of the following:	07 x 1	= 07
Illustrate the N-queens problem? Draw "State Space Tree" for 4 queen's	4	K3
problem using backtracking.		
Find the optimal solution to the $0/1$ Knapsack instances with n=4 and	4	K2
	i l	

Knapsack capacity m=8 5,6} and W={2, 3, 4, 5}	where profits and weights as follows : $P=\{1, 2, $	
	A	

	independent of the original and the second of the second o			1
	$5,6$ and W= $\{2, 3, 4, 5\}$			
7.	Attempt any <i>one</i> part of the following:	07 x 1	l = 07	0
a.	Explain P, NP, NP -Complete and NP-Hard complexity classes. How they are	5	K2 👩	
	related to each other.		0	\mathbf{D}
b.	Write Knuth-Morris-Pratt string matching algorithm. Take a suitable	5	K3	
	example Compute the prefix function π for the pattern	0		
	ababbabbabbabbabb when the alphabet is $\sum = \{a, b\}$.	Λ :		

2. Jan 2025 of the second